/* Minetest Copyright (C) 2015 est31 This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "util/areastore.h" #include "util/serialize.h" #include "util/container.h" #if USE_SPATIAL #include #include #include #endif #define AST_SMALLER_EQ_AS(p, q) (((p).X <= (q).X) && ((p).Y <= (q).Y) && ((p).Z <= (q).Z)) #define AST_OVERLAPS_IN_DIMENSION(amine, amaxe, b, d) \ (!(((amine).d > (b)->maxedge.d) || ((amaxe).d < (b)->minedge.d))) #define AST_CONTAINS_PT(a, p) (AST_SMALLER_EQ_AS((a)->minedge, (p)) && \ AST_SMALLER_EQ_AS((p), (a)->maxedge)) #define AST_CONTAINS_AREA(amine, amaxe, b) \ (AST_SMALLER_EQ_AS((amine), (b)->minedge) \ && AST_SMALLER_EQ_AS((b)->maxedge, (amaxe))) #define AST_AREAS_OVERLAP(amine, amaxe, b) \ (AST_OVERLAPS_IN_DIMENSION((amine), (amaxe), (b), X) && \ AST_OVERLAPS_IN_DIMENSION((amine), (amaxe), (b), Y) && \ AST_OVERLAPS_IN_DIMENSION((amine), (amaxe), (b), Z)) AreaStore *AreaStore::getOptimalImplementation() { #if USE_SPATIAL return new SpatialAreaStore(); #else return new VectorAreaStore(); #endif } const Area *AreaStore::getArea(u32 id) const { AreaMap::const_iterator it = areas_map.find(id); if (it == areas_map.end()) return nullptr; return &it->second; } void AreaStore::serialize(std::ostream &os) const { // WARNING: // Before 5.1.0-dev: version != 0 throws SerializationError // After 5.1.0-dev: version >= 5 throws SerializationError // Forwards-compatibility is assumed before version 5. writeU8(os, 0); // Serialisation version // TODO: Compression? writeU16(os, areas_map.size()); for (const auto &it : areas_map) { const Area &a = it.second; writeV3S16(os, a.minedge); writeV3S16(os, a.maxedge); writeU16(os, a.data.size()); os.write(a.data.data(), a.data.size()); } // Serialize IDs for (const auto &it : areas_map) writeU32(os, it.second.id); } void AreaStore::deserialize(std::istream &is) { u8 ver = readU8(is); // Assume forwards-compatibility before version 5 if (ver >= 5) throw SerializationError("Unknown AreaStore " "serialization version!"); u16 num_areas = readU16(is); std::vector areas; areas.reserve(num_areas); for (u32 i = 0; i < num_areas; ++i) { Area a(U32_MAX); a.minedge = readV3S16(is); a.maxedge = readV3S16(is); u16 data_len = readU16(is); a.data = std::string(data_len, '\0'); is.read(&a.data[0], data_len); areas.emplace_back(std::move(a)); } bool read_ids = is.good(); // EOF for old formats for (auto &area : areas) { if (read_ids) area.id = readU32(is); insertArea(&area); } } void AreaStore::invalidateCache() { if (m_cache_enabled) { m_res_cache.invalidate(); } } u32 AreaStore::getNextId() const { u32 free_id = 0; for (const auto &area : areas_map) { if (area.first > free_id) return free_id; // Found gap free_id = area.first + 1; } // End of map return free_id; } void AreaStore::setCacheParams(bool enabled, u8 block_radius, size_t limit) { m_cache_enabled = enabled; m_cacheblock_radius = MYMAX(block_radius, 16); m_res_cache.setLimit(MYMAX(limit, 20)); invalidateCache(); } void AreaStore::cacheMiss(void *data, const v3s16 &mpos, std::vector *dest) { AreaStore *as = (AreaStore *)data; u8 r = as->m_cacheblock_radius; // get the points at the edges of the mapblock v3s16 minedge(mpos.X * r, mpos.Y * r, mpos.Z * r); v3s16 maxedge( minedge.X + r - 1, minedge.Y + r - 1, minedge.Z + r - 1); as->getAreasInArea(dest, minedge, maxedge, true); /* infostream << "Cache miss with " << dest->size() << " areas, between (" << minedge.X << ", " << minedge.Y << ", " << minedge.Z << ") and (" << maxedge.X << ", " << maxedge.Y << ", " << maxedge.Z << ")" << std::endl; // */ } void AreaStore::getAreasForPos(std::vector *result, v3s16 pos) { if (m_cache_enabled) { v3s16 mblock = getContainerPos(pos, m_cacheblock_radius); const std::vector *pre_list = m_res_cache.lookupCache(mblock); size_t s_p_l = pre_list->size(); for (size_t i = 0; i < s_p_l; i++) { Area *b = (*pre_list)[i]; if (AST_CONTAINS_PT(b, pos)) { result->push_back(b); } } } else { return getAreasForPosImpl(result, pos); } } //// // VectorAreaStore //// bool VectorAreaStore::insertArea(Area *a) { if (a->id == U32_MAX) a->id = getNextId(); std::pair res = areas_map.insert(std::make_pair(a->id, *a)); if (!res.second) // ID is not unique return false; m_areas.push_back(&res.first->second); invalidateCache(); return true; } bool VectorAreaStore::removeArea(u32 id) { AreaMap::iterator it = areas_map.find(id); if (it == areas_map.end()) return false; Area *a = &it->second; for (std::vector::iterator v_it = m_areas.begin(); v_it != m_areas.end(); ++v_it) { if (*v_it == a) { m_areas.erase(v_it); break; } } areas_map.erase(it); invalidateCache(); return true; } void VectorAreaStore::getAreasForPosImpl(std::vector *result, v3s16 pos) { for (Area *area : m_areas) { if (AST_CONTAINS_PT(area, pos)) { result->push_back(area); } } } void VectorAreaStore::getAreasInArea(std::vector *result, v3s16 minedge, v3s16 maxedge, bool accept_overlap) { for (Area *area : m_areas) { if (accept_overlap ? AST_AREAS_OVERLAP(minedge, maxedge, area) : AST_CONTAINS_AREA(minedge, maxedge, area)) { result->push_back(area); } } } #if USE_SPATIAL static inline SpatialIndex::Region get_spatial_region(const v3s16 minedge, const v3s16 maxedge) { const double p_low[] = {(double)minedge.X, (double)minedge.Y, (double)minedge.Z}; const double p_high[] = {(double)maxedge.X, (double)maxedge.Y, (double)maxedge.Z}; return SpatialIndex::Region(p_low, p_high, 3); } static inline SpatialIndex::Point get_spatial_point(const v3s16 pos) { const double p[] = {(double)pos.X, (double)pos.Y, (double)pos.Z}; return SpatialIndex::Point(p, 3); } bool SpatialAreaStore::insertArea(Area *a) { if (a->id == U32_MAX) a->id = getNextId(); if (!areas_map.insert(std::make_pair(a->id, *a)).second) // ID is not unique return false; m_tree->insertData(0, nullptr, get_spatial_region(a->minedge, a->maxedge), a->id); invalidateCache(); return true; } bool SpatialAreaStore::removeArea(u32 id) { std::map::iterator itr = areas_map.find(id); if (itr != areas_map.end()) { Area *a = &itr->second; bool result = m_tree->deleteData(get_spatial_region(a->minedge, a->maxedge), id); areas_map.erase(itr); invalidateCache(); return result; } else { return false; } } void SpatialAreaStore::getAreasForPosImpl(std::vector *result, v3s16 pos) { VectorResultVisitor visitor(result, this); m_tree->pointLocationQuery(get_spatial_point(pos), visitor); } void SpatialAreaStore::getAreasInArea(std::vector *result, v3s16 minedge, v3s16 maxedge, bool accept_overlap) { VectorResultVisitor visitor(result, this); if (accept_overlap) { m_tree->intersectsWithQuery(get_spatial_region(minedge, maxedge), visitor); } else { m_tree->containsWhatQuery(get_spatial_region(minedge, maxedge), visitor); } } SpatialAreaStore::~SpatialAreaStore() { delete m_tree; delete m_storagemanager; } SpatialAreaStore::SpatialAreaStore() { m_storagemanager = SpatialIndex::StorageManager::createNewMemoryStorageManager(); SpatialIndex::id_type id; m_tree = SpatialIndex::RTree::createNewRTree( *m_storagemanager, .7, // Fill factor 100, // Index capacity 100, // Leaf capacity 3, // dimension :) SpatialIndex::RTree::RV_RSTAR, id); } #endif