/* Minetest Copyright (C) 2013 celeron55, Perttu Ahola This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "particles.h" #include #include "client.h" #include "collision.h" #include "client/content_cao.h" #include "client/clientevent.h" #include "client/renderingengine.h" #include "util/numeric.h" #include "light.h" #include "environment.h" #include "clientmap.h" #include "mapnode.h" #include "nodedef.h" #include "client.h" #include "settings.h" /* Particle */ Particle::Particle( IGameDef *gamedef, LocalPlayer *player, ClientEnvironment *env, const ParticleParameters &p, const ClientTexRef& texture, v2f texpos, v2f texsize, video::SColor color ): scene::ISceneNode(((Client *)gamedef)->getSceneManager()->getRootSceneNode(), ((Client *)gamedef)->getSceneManager()), m_texture(texture) { // Misc m_gamedef = gamedef; m_env = env; // translate blend modes to GL blend functions video::E_BLEND_FACTOR bfsrc, bfdst; video::E_BLEND_OPERATION blendop; const auto blendmode = texture.tex != nullptr ? texture.tex -> blendmode : ParticleParamTypes::BlendMode::alpha; switch (blendmode) { case ParticleParamTypes::BlendMode::alpha: bfsrc = video::EBF_SRC_ALPHA; bfdst = video::EBF_ONE_MINUS_SRC_ALPHA; blendop = video::EBO_ADD; break; case ParticleParamTypes::BlendMode::add: bfsrc = video::EBF_SRC_ALPHA; bfdst = video::EBF_DST_ALPHA; blendop = video::EBO_ADD; break; case ParticleParamTypes::BlendMode::sub: bfsrc = video::EBF_SRC_ALPHA; bfdst = video::EBF_DST_ALPHA; blendop = video::EBO_REVSUBTRACT; break; case ParticleParamTypes::BlendMode::screen: bfsrc = video::EBF_ONE; bfdst = video::EBF_ONE_MINUS_SRC_COLOR; blendop = video::EBO_ADD; break; default: assert(false); } // Texture m_material.setFlag(video::EMF_LIGHTING, false); m_material.setFlag(video::EMF_BACK_FACE_CULLING, false); m_material.setFlag(video::EMF_BILINEAR_FILTER, false); m_material.setFlag(video::EMF_FOG_ENABLE, true); // correctly render layered transparent particles -- see #10398 m_material.setFlag(video::EMF_ZWRITE_ENABLE, true); // enable alpha blending and set blend mode m_material.MaterialType = video::EMT_ONETEXTURE_BLEND; m_material.MaterialTypeParam = video::pack_textureBlendFunc( bfsrc, bfdst, video::EMFN_MODULATE_1X, video::EAS_TEXTURE | video::EAS_VERTEX_COLOR); m_material.BlendOperation = blendop; m_material.setTexture(0, m_texture.ref); m_texpos = texpos; m_texsize = texsize; m_animation = p.animation; // Color m_base_color = color; m_color = color; // Particle related m_pos = p.pos; m_velocity = p.vel; m_acceleration = p.acc; m_drag = p.drag; m_jitter = p.jitter; m_bounce = p.bounce; m_expiration = p.expirationtime; m_player = player; m_size = p.size; m_collisiondetection = p.collisiondetection; m_collision_removal = p.collision_removal; m_object_collision = p.object_collision; m_vertical = p.vertical; m_glow = p.glow; m_alpha = 0; m_parent = nullptr; // Irrlicht stuff const float c = p.size / 2; m_collisionbox = aabb3f(-c, -c, -c, c, c, c); this->setAutomaticCulling(scene::EAC_OFF); // Init lighting updateLight(); // Init model updateVertices(); } Particle::~Particle() { /* if our textures aren't owned by a particlespawner, we need to clean * them up ourselves when the particle dies */ if (m_parent == nullptr) delete m_texture.tex; } void Particle::OnRegisterSceneNode() { if (IsVisible) SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT_EFFECT); ISceneNode::OnRegisterSceneNode(); } void Particle::render() { video::IVideoDriver *driver = SceneManager->getVideoDriver(); driver->setMaterial(m_material); driver->setTransform(video::ETS_WORLD, AbsoluteTransformation); u16 indices[] = {0,1,2, 2,3,0}; driver->drawVertexPrimitiveList(m_vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLES, video::EIT_16BIT); } void Particle::step(float dtime) { m_time += dtime; // apply drag (not handled by collisionMoveSimple) and brownian motion v3f av = vecAbsolute(m_velocity); av -= av * (m_drag * dtime); m_velocity = av*vecSign(m_velocity) + v3f(m_jitter.pickWithin())*dtime; if (m_collisiondetection) { aabb3f box = m_collisionbox; v3f p_pos = m_pos * BS; v3f p_velocity = m_velocity * BS; collisionMoveResult r = collisionMoveSimple(m_env, m_gamedef, BS * 0.5f, box, 0.0f, dtime, &p_pos, &p_velocity, m_acceleration * BS, nullptr, m_object_collision); f32 bounciness = m_bounce.pickWithin(); if (r.collides && (m_collision_removal || bounciness > 0)) { if (m_collision_removal) { // force expiration of the particle m_expiration = -1.0f; } else if (bounciness > 0) { /* cheap way to get a decent bounce effect is to only invert the * largest component of the velocity vector, so e.g. you don't * have a rock immediately bounce back in your face when you try * to skip it across the water (as would happen if we simply * downscaled and negated the velocity vector). this means * bounciness will work properly for cubic objects, but meshes * with diagonal angles and entities will not yield the correct * visual. this is probably unavoidable */ if (av.Y > av.X && av.Y > av.Z) { m_velocity.Y = -(m_velocity.Y * bounciness); } else if (av.X > av.Y && av.X > av.Z) { m_velocity.X = -(m_velocity.X * bounciness); } else if (av.Z > av.Y && av.Z > av.X) { m_velocity.Z = -(m_velocity.Z * bounciness); } else { // well now we're in a bit of a pickle m_velocity = -(m_velocity * bounciness); } } } else { m_velocity = p_velocity / BS; } m_pos = p_pos / BS; } else { // apply acceleration m_velocity += m_acceleration * dtime; m_pos += m_velocity * dtime; } if (m_animation.type != TAT_NONE) { m_animation_time += dtime; int frame_length_i, frame_count; m_animation.determineParams( m_material.getTexture(0)->getSize(), &frame_count, &frame_length_i, NULL); float frame_length = frame_length_i / 1000.0; while (m_animation_time > frame_length) { m_animation_frame++; m_animation_time -= frame_length; } } // animate particle alpha in accordance with settings if (m_texture.tex != nullptr) m_alpha = m_texture.tex -> alpha.blend(m_time / (m_expiration+0.1f)); else m_alpha = 1.f; // Update lighting updateLight(); // Update model updateVertices(); // Update position -- see #10398 v3s16 camera_offset = m_env->getCameraOffset(); setPosition(m_pos*BS - intToFloat(camera_offset, BS)); } void Particle::updateLight() { u8 light = 0; bool pos_ok; v3s16 p = v3s16( floor(m_pos.X+0.5), floor(m_pos.Y+0.5), floor(m_pos.Z+0.5) ); MapNode n = m_env->getClientMap().getNode(p, &pos_ok); if (pos_ok) light = n.getLightBlend(m_env->getDayNightRatio(), m_gamedef->ndef()); else light = blend_light(m_env->getDayNightRatio(), LIGHT_SUN, 0); u8 m_light = decode_light(light + m_glow); m_color.set(m_alpha*255, m_light * m_base_color.getRed() / 255, m_light * m_base_color.getGreen() / 255, m_light * m_base_color.getBlue() / 255); } void Particle::updateVertices() { f32 tx0, tx1, ty0, ty1; v2f scale; if (m_texture.tex != nullptr) scale = m_texture.tex -> scale.blend(m_time / (m_expiration+0.1)); else scale = v2f(1.f, 1.f); if (m_animation.type != TAT_NONE) { const v2u32 texsize = m_material.getTexture(0)->getSize(); v2f texcoord, framesize_f; v2u32 framesize; texcoord = m_animation.getTextureCoords(texsize, m_animation_frame); m_animation.determineParams(texsize, NULL, NULL, &framesize); framesize_f = v2f(framesize.X / (float) texsize.X, framesize.Y / (float) texsize.Y); tx0 = m_texpos.X + texcoord.X; tx1 = m_texpos.X + texcoord.X + framesize_f.X * m_texsize.X; ty0 = m_texpos.Y + texcoord.Y; ty1 = m_texpos.Y + texcoord.Y + framesize_f.Y * m_texsize.Y; } else { tx0 = m_texpos.X; tx1 = m_texpos.X + m_texsize.X; ty0 = m_texpos.Y; ty1 = m_texpos.Y + m_texsize.Y; } auto half = m_size * .5f, hx = half * scale.X, hy = half * scale.Y; m_vertices[0] = video::S3DVertex(-hx, -hy, 0, 0, 0, 0, m_color, tx0, ty1); m_vertices[1] = video::S3DVertex(hx, -hy, 0, 0, 0, 0, m_color, tx1, ty1); m_vertices[2] = video::S3DVertex(hx, hy, 0, 0, 0, 0, m_color, tx1, ty0); m_vertices[3] = video::S3DVertex(-hx, hy, 0, 0, 0, 0, m_color, tx0, ty0); // see #10398 // v3s16 camera_offset = m_env->getCameraOffset(); // particle position is now handled by step() m_box.reset(v3f()); for (video::S3DVertex &vertex : m_vertices) { if (m_vertical) { v3f ppos = m_player->getPosition()/BS; vertex.Pos.rotateXZBy(std::atan2(ppos.Z - m_pos.Z, ppos.X - m_pos.X) / core::DEGTORAD + 90); } else { vertex.Pos.rotateYZBy(m_player->getPitch()); vertex.Pos.rotateXZBy(m_player->getYaw()); } m_box.addInternalPoint(vertex.Pos); } } /* ParticleSpawner */ ParticleSpawner::ParticleSpawner( IGameDef *gamedef, LocalPlayer *player, const ParticleSpawnerParameters &p, u16 attached_id, std::unique_ptr& texpool, size_t texcount, ParticleManager *p_manager ): m_particlemanager(p_manager), p(p) { m_gamedef = gamedef; m_player = player; m_attached_id = attached_id; m_texpool = std::move(texpool); m_texcount = texcount; m_time = 0; m_active = 0; m_dying = false; m_spawntimes.reserve(p.amount + 1); for (u16 i = 0; i <= p.amount; i++) { float spawntime = myrand_float() * p.time; m_spawntimes.push_back(spawntime); } size_t max_particles = 0; // maximum number of particles likely to be visible at any given time if (p.time != 0) { auto maxGenerations = p.time / std::min(p.exptime.start.min, p.exptime.end.min); max_particles = p.amount / maxGenerations; } else { auto longestLife = std::max(p.exptime.start.max, p.exptime.end.max); max_particles = p.amount * longestLife; } p_manager->reserveParticleSpace(max_particles * 1.2); } namespace { GenericCAO *findObjectByID(ClientEnvironment *env, u16 id) { if (id == 0) return nullptr; return env->getGenericCAO(id); } } void ParticleSpawner::spawnParticle(ClientEnvironment *env, float radius, const core::matrix4 *attached_absolute_pos_rot_matrix) { float fac = 0; if (p.time != 0) { // ensure safety from divide-by-zeroes fac = m_time / (p.time+0.1f); } auto r_pos = p.pos.blend(fac); auto r_vel = p.vel.blend(fac); auto r_acc = p.acc.blend(fac); auto r_drag = p.drag.blend(fac); auto r_radius = p.radius.blend(fac); auto r_jitter = p.jitter.blend(fac); auto r_bounce = p.bounce.blend(fac); v3f attractor_origin = p.attractor_origin.blend(fac); v3f attractor_direction = p.attractor_direction.blend(fac); auto attractor_obj = findObjectByID(env, p.attractor_attachment); auto attractor_direction_obj = findObjectByID(env, p.attractor_direction_attachment); auto r_exp = p.exptime.blend(fac); auto r_size = p.size.blend(fac); auto r_attract = p.attract.blend(fac); auto attract = r_attract.pickWithin(); v3f ppos = m_player->getPosition() / BS; v3f pos = r_pos.pickWithin(); v3f sphere_radius = r_radius.pickWithin(); // Need to apply this first or the following check // will be wrong for attached spawners if (attached_absolute_pos_rot_matrix) { pos *= BS; attached_absolute_pos_rot_matrix->transformVect(pos); pos /= BS; v3s16 camera_offset = m_particlemanager->m_env->getCameraOffset(); pos.X += camera_offset.X; pos.Y += camera_offset.Y; pos.Z += camera_offset.Z; } if (pos.getDistanceFromSQ(ppos) > radius*radius) return; // Parameters for the single particle we're about to spawn ParticleParameters pp; pp.pos = pos; pp.vel = r_vel.pickWithin(); pp.acc = r_acc.pickWithin(); pp.drag = r_drag.pickWithin(); pp.jitter = r_jitter; pp.bounce = r_bounce; if (attached_absolute_pos_rot_matrix) { // Apply attachment rotation attached_absolute_pos_rot_matrix->rotateVect(pp.vel); attached_absolute_pos_rot_matrix->rotateVect(pp.acc); } if (attractor_obj) attractor_origin += attractor_obj->getPosition() / BS; if (attractor_direction_obj) { auto *attractor_absolute_pos_rot_matrix = attractor_direction_obj->getAbsolutePosRotMatrix(); if (attractor_absolute_pos_rot_matrix) attractor_absolute_pos_rot_matrix->rotateVect(attractor_direction); } pp.expirationtime = r_exp.pickWithin(); if (sphere_radius != v3f()) { f32 l = sphere_radius.getLength(); v3f mag = sphere_radius; mag.normalize(); v3f ofs = v3f(l,0,0); ofs.rotateXZBy(myrand_range(0.f,360.f)); ofs.rotateYZBy(myrand_range(0.f,360.f)); ofs.rotateXYBy(myrand_range(0.f,360.f)); pp.pos += ofs * mag; } if (p.attractor_kind != ParticleParamTypes::AttractorKind::none && attract != 0) { v3f dir; f32 dist = 0; /* =0 necessary to silence warning */ switch (p.attractor_kind) { case ParticleParamTypes::AttractorKind::none: break; case ParticleParamTypes::AttractorKind::point: { dist = pp.pos.getDistanceFrom(attractor_origin); dir = pp.pos - attractor_origin; dir.normalize(); break; } case ParticleParamTypes::AttractorKind::line: { // https://github.com/minetest/minetest/issues/11505#issuecomment-915612700 const auto& lorigin = attractor_origin; v3f ldir = attractor_direction; ldir.normalize(); auto origin_to_point = pp.pos - lorigin; auto scalar_projection = origin_to_point.dotProduct(ldir); auto point_on_line = lorigin + (ldir * scalar_projection); dist = pp.pos.getDistanceFrom(point_on_line); dir = (point_on_line - pp.pos); dir.normalize(); dir *= -1; // flip it around so strength=1 attracts, not repulses break; } case ParticleParamTypes::AttractorKind::plane: { // https://github.com/minetest/minetest/issues/11505#issuecomment-915612700 const v3f& porigin = attractor_origin; v3f normal = attractor_direction; normal.normalize(); v3f point_to_origin = porigin - pp.pos; f32 factor = normal.dotProduct(point_to_origin); if (numericAbsolute(factor) == 0.0f) { dir = normal; } else { factor = numericSign(factor); dir = normal * factor; } dist = numericAbsolute(normal.dotProduct(pp.pos - porigin)); dir *= -1; // flip it around so strength=1 attracts, not repulses break; } } f32 speedTowards = numericAbsolute(attract) * dist; v3f avel = dir * speedTowards; if (attract > 0 && speedTowards > 0) { avel *= -1; if (p.attractor_kill) { // make sure the particle dies after crossing the attractor threshold f32 timeToCenter = dist / speedTowards; if (timeToCenter < pp.expirationtime) pp.expirationtime = timeToCenter; } } pp.vel += avel; } p.copyCommon(pp); ClientTexRef texture; v2f texpos, texsize; video::SColor color(0xFFFFFFFF); if (p.node.getContent() != CONTENT_IGNORE) { const ContentFeatures &f = m_particlemanager->m_env->getGameDef()->ndef()->get(p.node); if (!ParticleManager::getNodeParticleParams(p.node, f, pp, &texture.ref, texpos, texsize, &color, p.node_tile)) return; } else { if (m_texcount == 0) return; texture = decltype(texture)(m_texpool[m_texcount == 1 ? 0 : myrand_range(0,m_texcount-1)]); texpos = v2f(0.0f, 0.0f); texsize = v2f(1.0f, 1.0f); if (texture.tex->animated) pp.animation = texture.tex->animation; } // synchronize animation length with particle life if desired if (pp.animation.type != TAT_NONE) { if (pp.animation.type == TAT_VERTICAL_FRAMES && pp.animation.vertical_frames.length < 0) { auto& a = pp.animation.vertical_frames; // we add a tiny extra value to prevent the first frame // from flickering back on just before the particle dies a.length = (pp.expirationtime / -a.length) + 0.1; } else if (pp.animation.type == TAT_SHEET_2D && pp.animation.sheet_2d.frame_length < 0) { auto& a = pp.animation.sheet_2d; auto frames = a.frames_w * a.frames_h; auto runtime = (pp.expirationtime / -a.frame_length) + 0.1; pp.animation.sheet_2d.frame_length = frames / runtime; } } // Allow keeping default random size if (p.size.start.max > 0.0f || p.size.end.max > 0.0f) pp.size = r_size.pickWithin(); ++m_active; auto pa = new Particle( m_gamedef, m_player, env, pp, texture, texpos, texsize, color ); pa->m_parent = this; m_particlemanager->addParticle(pa); } void ParticleSpawner::step(float dtime, ClientEnvironment *env) { m_time += dtime; static thread_local const float radius = g_settings->getS16("max_block_send_distance") * MAP_BLOCKSIZE; bool unloaded = false; const core::matrix4 *attached_absolute_pos_rot_matrix = nullptr; if (m_attached_id) { if (GenericCAO *attached = env->getGenericCAO(m_attached_id)) { attached_absolute_pos_rot_matrix = attached->getAbsolutePosRotMatrix(); } else { unloaded = true; } } if (p.time != 0) { // Spawner exists for a predefined timespan for (auto i = m_spawntimes.begin(); i != m_spawntimes.end(); ) { if ((*i) <= m_time && p.amount > 0) { --p.amount; // Pretend to, but don't actually spawn a particle if it is // attached to an unloaded object or distant from player. if (!unloaded) spawnParticle(env, radius, attached_absolute_pos_rot_matrix); i = m_spawntimes.erase(i); } else { ++i; } } } else { // Spawner exists for an infinity timespan, spawn on a per-second base // Skip this step if attached to an unloaded object if (unloaded) return; for (int i = 0; i <= p.amount; i++) { if (myrand_float() < dtime) spawnParticle(env, radius, attached_absolute_pos_rot_matrix); } } } /* ParticleManager */ ParticleManager::ParticleManager(ClientEnvironment *env) : m_env(env) {} ParticleManager::~ParticleManager() { clearAll(); } void ParticleManager::step(float dtime) { stepParticles (dtime); stepSpawners (dtime); } void ParticleManager::stepSpawners(float dtime) { MutexAutoLock lock(m_spawner_list_lock); for (auto i = m_particle_spawners.begin(); i != m_particle_spawners.end();) { if (i->second->getExpired()) { // the particlespawner owns the textures, so we need to make // sure there are no active particles before we free it if (i->second->m_active == 0) { delete i->second; m_particle_spawners.erase(i++); } else { ++i; } } else { i->second->step(dtime, m_env); ++i; } } } void ParticleManager::stepParticles(float dtime) { MutexAutoLock lock(m_particle_list_lock); for (auto i = m_particles.begin(); i != m_particles.end();) { if ((*i)->get_expired()) { if ((*i)->m_parent) { assert((*i)->m_parent->m_active != 0); --(*i)->m_parent->m_active; } (*i)->remove(); delete *i; i = m_particles.erase(i); } else { (*i)->step(dtime); ++i; } } } void ParticleManager::clearAll() { MutexAutoLock lock(m_spawner_list_lock); MutexAutoLock lock2(m_particle_list_lock); for (auto i = m_particle_spawners.begin(); i != m_particle_spawners.end();) { delete i->second; m_particle_spawners.erase(i++); } for(auto i = m_particles.begin(); i != m_particles.end();) { (*i)->remove(); delete *i; i = m_particles.erase(i); } } void ParticleManager::handleParticleEvent(ClientEvent *event, Client *client, LocalPlayer *player) { switch (event->type) { case CE_DELETE_PARTICLESPAWNER: { deleteParticleSpawner(event->delete_particlespawner.id); // no allocated memory in delete event break; } case CE_ADD_PARTICLESPAWNER: { deleteParticleSpawner(event->add_particlespawner.id); const ParticleSpawnerParameters &p = *event->add_particlespawner.p; // texture pool std::unique_ptr texpool = nullptr; size_t txpsz = 0; if (!p.texpool.empty()) { txpsz = p.texpool.size(); texpool = decltype(texpool)(new ClientTexture [txpsz]); for (size_t i = 0; i < txpsz; ++i) { texpool[i] = ClientTexture(p.texpool[i], client->tsrc()); } } else { // no texpool in use, use fallback texture txpsz = 1; texpool = decltype(texpool)(new ClientTexture[1] { ClientTexture(p.texture, client->tsrc()) }); } auto toadd = new ParticleSpawner(client, player, p, event->add_particlespawner.attached_id, texpool, txpsz, this); addParticleSpawner(event->add_particlespawner.id, toadd); delete event->add_particlespawner.p; break; } case CE_SPAWN_PARTICLE: { ParticleParameters &p = *event->spawn_particle; ClientTexRef texture; v2f texpos, texsize; video::SColor color(0xFFFFFFFF); f32 oldsize = p.size; if (p.node.getContent() != CONTENT_IGNORE) { const ContentFeatures &f = m_env->getGameDef()->ndef()->get(p.node); getNodeParticleParams(p.node, f, p, &texture.ref, texpos, texsize, &color, p.node_tile); } else { /* with no particlespawner to own the texture, we need * to save it on the heap. it will be freed when the * particle is destroyed */ auto texstore = new ClientTexture(p.texture, client->tsrc()); texture = ClientTexRef(*texstore); texpos = v2f(0.0f, 0.0f); texsize = v2f(1.0f, 1.0f); } // Allow keeping default random size if (oldsize > 0.0f) p.size = oldsize; if (texture.ref) { Particle *toadd = new Particle(client, player, m_env, p, texture, texpos, texsize, color); addParticle(toadd); } delete event->spawn_particle; break; } default: break; } } bool ParticleManager::getNodeParticleParams(const MapNode &n, const ContentFeatures &f, ParticleParameters &p, video::ITexture **texture, v2f &texpos, v2f &texsize, video::SColor *color, u8 tilenum) { // No particles for "airlike" nodes if (f.drawtype == NDT_AIRLIKE) return false; // Texture u8 texid; if (tilenum > 0 && tilenum <= 6) texid = tilenum - 1; else texid = myrand_range(0,5); const TileLayer &tile = f.tiles[texid].layers[0]; p.animation.type = TAT_NONE; // Only use first frame of animated texture if (tile.material_flags & MATERIAL_FLAG_ANIMATION) *texture = (*tile.frames)[0].texture; else *texture = tile.texture; float size = (myrand_range(0,8)) / 64.0f; p.size = BS * size; if (tile.scale) size /= tile.scale; texsize = v2f(size * 2.0f, size * 2.0f); texpos.X = (myrand_range(0,64)) / 64.0f - texsize.X; texpos.Y = (myrand_range(0,64)) / 64.0f - texsize.Y; if (tile.has_color) *color = tile.color; else n.getColor(f, color); return true; } // The final burst of particles when a node is finally dug, *not* particles // spawned during the digging of a node. void ParticleManager::addDiggingParticles(IGameDef *gamedef, LocalPlayer *player, v3s16 pos, const MapNode &n, const ContentFeatures &f) { // No particles for "airlike" nodes if (f.drawtype == NDT_AIRLIKE) return; for (u16 j = 0; j < 16; j++) { addNodeParticle(gamedef, player, pos, n, f); } } // During the digging of a node particles are spawned individually by this // function, called from Game::handleDigging() in game.cpp. void ParticleManager::addNodeParticle(IGameDef *gamedef, LocalPlayer *player, v3s16 pos, const MapNode &n, const ContentFeatures &f) { ParticleParameters p; video::ITexture *ref = nullptr; v2f texpos, texsize; video::SColor color; if (!getNodeParticleParams(n, f, p, &ref, texpos, texsize, &color)) return; p.expirationtime = myrand_range(0, 100) / 100.0f; // Physics p.vel = v3f( myrand_range(-1.5f,1.5f), myrand_range(0.f,3.f), myrand_range(-1.5f,1.5f) ); p.acc = v3f( 0.0f, -player->movement_gravity * player->physics_override_gravity / BS, 0.0f ); p.pos = v3f( (f32)pos.X + myrand_range(0.f, .5f) - .25f, (f32)pos.Y + myrand_range(0.f, .5f) - .25f, (f32)pos.Z + myrand_range(0.f, .5f) - .25f ); Particle *toadd = new Particle( gamedef, player, m_env, p, ClientTexRef(ref), texpos, texsize, color); addParticle(toadd); } void ParticleManager::reserveParticleSpace(size_t max_estimate) { MutexAutoLock lock(m_particle_list_lock); m_particles.reserve(m_particles.size() + max_estimate); } void ParticleManager::addParticle(Particle *toadd) { MutexAutoLock lock(m_particle_list_lock); m_particles.push_back(toadd); } void ParticleManager::addParticleSpawner(u64 id, ParticleSpawner *toadd) { MutexAutoLock lock(m_spawner_list_lock); m_particle_spawners[id] = toadd; } void ParticleManager::deleteParticleSpawner(u64 id) { MutexAutoLock lock(m_spawner_list_lock); auto it = m_particle_spawners.find(id); if (it != m_particle_spawners.end()) { it->second->setDying(); } }