Revert "Don't apply the HF scaling for "upsampling" ambisonics"

This reverts commit bf3f63fb4c.
master
Chris Robinson 2022-09-02 09:41:19 -07:00
parent 02cf2bde7b
commit e5c49d019f
5 changed files with 119 additions and 16 deletions

View File

@ -194,6 +194,8 @@ struct ConvolutionState final : public EffectState {
struct ChannelData {
alignas(16) FloatBufferLine mBuffer{};
float mHfScale{};
BandSplitter mFilter{};
float Current[MAX_OUTPUT_CHANNELS]{};
float Target[MAX_OUTPUT_CHANNELS]{};
};
@ -233,6 +235,7 @@ void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
for(auto &chan : *mChans)
{
const al::span<float> src{chan.mBuffer.data(), samplesToDo};
chan.mFilter.processHfScale(src, chan.mHfScale);
MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0);
}
}
@ -277,6 +280,10 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buff
(uint64_t{buffer.storage->mSampleLen}*device->Frequency+(buffer.storage->mSampleRate-1)) /
buffer.storage->mSampleRate);
const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
for(auto &e : *mChans)
e.mFilter = splitter;
mFilter.resize(numChannels, {});
mOutput.resize(numChannels, {});
@ -411,7 +418,13 @@ void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot
{
DeviceBase *device{context->mDevice};
if(device->mAmbiOrder > mAmbiOrder)
{
mMix = &ConvolutionState::UpsampleMix;
const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, true);
(*mChans)[0].mHfScale = scales[0];
for(size_t i{1};i < mChans->size();++i)
(*mChans)[i].mHfScale = scales[1];
}
mOutTarget = target.Main->Buffer;
auto&& scales = GetAmbiScales(mAmbiScaling);

View File

@ -453,6 +453,8 @@ struct ReverbState final : public EffectState {
bool mUpmixOutput{false};
std::array<float,MaxAmbiOrder+1> mOrderScales{};
std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
static void DoMixRow(const al::span<float> OutBuffer, const al::span<const float,4> Gains,
@ -499,19 +501,30 @@ struct ReverbState final : public EffectState {
{
ASSUME(todo > 0);
/* TODO: If HF scaling isn't needed for upsampling, the A-to-B-Format
* matrix can be included with the panning gains like non-upsampled
* output.
/* When upsampling, the B-Format conversion needs to be done separately
* so the proper HF scaling can be applied to each B-Format channel.
* The panning gains then pan and upsample the B-Format channels.
*/
const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), todo};
for(size_t c{0u};c < NUM_LINES;c++)
{
DoMixRow(tmpspan, EarlyA2B[c], mEarlySamples[0].data(), mEarlySamples[0].size());
/* Apply scaling to the B-Format's HF response to "upsample" it to
* higher-order output.
*/
const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
mAmbiSplitter[0][c].processHfScale(tmpspan, hfscale);
MixSamples(tmpspan, samplesOut, mEarly.CurrentGain[c], mEarly.PanGain[c], todo, 0);
}
for(size_t c{0u};c < NUM_LINES;c++)
{
DoMixRow(tmpspan, LateA2B[c], mLateSamples[0].data(), mLateSamples[0].size());
const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
mAmbiSplitter[1][c].processHfScale(tmpspan, hfscale);
MixSamples(tmpspan, samplesOut, mLate.CurrentGain[c], mLate.PanGain[c], todo, 0);
}
}
@ -670,7 +683,19 @@ void ReverbState::deviceUpdate(const DeviceBase *device, const Buffer&)
mDoFading = true;
mOffset = 0;
mUpmixOutput = (device->mAmbiOrder > 1);
if(device->mAmbiOrder > 1)
{
mUpmixOutput = true;
mOrderScales = AmbiScale::GetHFOrderScales(1, true);
}
else
{
mUpmixOutput = false;
mOrderScales.fill(1.0f);
}
mAmbiSplitter[0][0].init(device->mXOverFreq / frequency);
std::fill(mAmbiSplitter[0].begin()+1, mAmbiSplitter[0].end(), mAmbiSplitter[0][0]);
std::fill(mAmbiSplitter[1].begin(), mAmbiSplitter[1].end(), mAmbiSplitter[0][0]);
}
/**************************************

View File

@ -366,3 +366,22 @@ const std::array<AmbiChannelFloatArray,9> AmbiScale::SecondOrder2DUp{CalcSecondO
const std::array<AmbiChannelFloatArray,16> AmbiScale::ThirdOrderUp{CalcThirdOrderUp()};
const std::array<AmbiChannelFloatArray,16> AmbiScale::ThirdOrder2DUp{CalcThirdOrder2DUp()};
const std::array<AmbiChannelFloatArray,25> AmbiScale::FourthOrder2DUp{CalcFourthOrder2DUp()};
const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale1O{{
2.000000000e+00f, 1.154700538e+00f
}};
const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale1O2D{{
1.414213562e+00f, 1.000000000e+00f
}};
const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale2O{{
1.972026594e+00f, 1.527525232e+00f, 7.888106377e-01f
}};
const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale2O2D{{
1.414213562e+00f, 1.224744871e+00f, 7.071067812e-01f
}};
const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale3O{{
1.865086714e+00f, 1.606093894e+00f, 1.142055301e+00f, 5.683795528e-01f
}};
const std::array<float,MaxAmbiOrder+1> AmbiScale::DecoderHFScale3O2D{{
1.414213562e+00f, 1.306562965e+00f, 1.000000000e+00f, 5.411961001e-01f
}};

View File

@ -113,6 +113,20 @@ struct AmbiScale {
return ret;
}
/* Retrieves per-order HF scaling factors for "upsampling" ambisonic data. */
static std::array<float,MaxAmbiOrder+1> GetHFOrderScales(const uint order, const bool is3D) noexcept
{
if(order >= 3) return is3D ? DecoderHFScale3O : DecoderHFScale3O2D;
if(order == 2) return is3D ? DecoderHFScale2O : DecoderHFScale2O2D;
return is3D ? DecoderHFScale1O : DecoderHFScale1O2D;
}
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale1O;
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale1O2D;
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale2O;
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale2O2D;
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale3O;
static const std::array<float,MaxAmbiOrder+1> DecoderHFScale3O2D;
static const std::array<std::array<float,MaxAmbiChannels>,4> FirstOrderUp;
static const std::array<std::array<float,MaxAmbiChannels>,4> FirstOrder2DUp;

View File

@ -892,20 +892,52 @@ void Voice::prepare(DeviceBase *device)
/* Make sure the sample history is cleared. */
std::fill(mPrevSamples.begin(), mPrevSamples.end(), HistoryLine{});
/* 2-channel UHJ needs different shelf filters. However, we can't just use
* different shelf filters after mixing it, given any old speaker setup the
* user has. To make this work, we apply the expected shelf filters for
* decoding UHJ2 to quad (only needs LF scaling), and act as if those 4
* quad channels are encoded right back into B-Format.
*
* This isn't perfect, but without an entirely separate and limited UHJ2
* path, it's better than nothing.
*
* Do not apply the shelf filter with UHJ output. UHJ2->B-Format->UHJ2 is
* identity, so don't mess with it.
/* Don't need to set the VoiceIsAmbisonic flag if the device is not higher
* order than the voice. No HF scaling is necessary to mix it.
*/
if(mFmtChannels == FmtUHJ2 && !device->mUhjEncoder)
if(mAmbiOrder && device->mAmbiOrder > mAmbiOrder)
{
const uint8_t *OrderFromChan{Is2DAmbisonic(mFmtChannels) ?
AmbiIndex::OrderFrom2DChannel().data() : AmbiIndex::OrderFromChannel().data()};
const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, !Is2DAmbisonic(mFmtChannels));
const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
for(auto &chandata : mChans)
{
chandata.mAmbiHFScale = scales[*(OrderFromChan++)];
chandata.mAmbiLFScale = 1.0f;
chandata.mAmbiSplitter = splitter;
chandata.mDryParams = DirectParams{};
chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
}
/* 2-channel UHJ needs different shelf filters. However, we can't just
* use different shelf filters after mixing it and with any old speaker
* setup the user has. To make this work, we apply the expected shelf
* filters for decoding UHJ2 to quad (only needs LF scaling), and act
* as if those 4 quad channels are encoded right back onto higher-order
* B-Format.
*
* This isn't perfect, but without an entirely separate and limited
* UHJ2 path, it's better than nothing.
*/
if(mFmtChannels == FmtUHJ2)
{
mChans[0].mAmbiHFScale = 1.0f;
mChans[0].mAmbiLFScale = UhjDecoder<UhjLengthStd>::sWLFScale;
mChans[1].mAmbiHFScale = 1.0f;
mChans[1].mAmbiLFScale = UhjDecoder<UhjLengthStd>::sXYLFScale;
mChans[2].mAmbiHFScale = 1.0f;
mChans[2].mAmbiLFScale = UhjDecoder<UhjLengthStd>::sXYLFScale;
}
mFlags.set(VoiceIsAmbisonic);
}
else if(mFmtChannels == FmtUHJ2 && !device->mUhjEncoder)
{
/* 2-channel UHJ with first-order output also needs the shelf filter
* correction applied, except with UHJ output (UHJ2->B-Format->UHJ2 is
* identity, so don't mess with it).
*/
const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
for(auto &chandata : mChans)
{