minetest/src/voxel.cpp

963 lines
21 KiB
C++

/*
Minetest-c55
Copyright (C) 2010 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "voxel.h"
#include "map.h"
// For TimeTaker
#include "utility.h"
#include "gettime.h"
/*
Debug stuff
*/
u32 addarea_time = 0;
u32 emerge_time = 0;
u32 emerge_load_time = 0;
u32 clearflag_time = 0;
//u32 getwaterpressure_time = 0;
//u32 spreadwaterpressure_time = 0;
u32 updateareawaterpressure_time = 0;
u32 flowwater_pre_time = 0;
VoxelManipulator::VoxelManipulator():
m_data(NULL),
m_flags(NULL)
{
m_disable_water_climb = false;
}
VoxelManipulator::~VoxelManipulator()
{
clear();
if(m_data)
delete[] m_data;
if(m_flags)
delete[] m_flags;
}
void VoxelManipulator::clear()
{
// Reset area to volume=0
m_area = VoxelArea();
if(m_data)
delete[] m_data;
m_data = NULL;
if(m_flags)
delete[] m_flags;
m_flags = NULL;
}
void VoxelManipulator::print(std::ostream &o, VoxelPrintMode mode)
{
v3s16 em = m_area.getExtent();
v3s16 of = m_area.MinEdge;
o<<"size: "<<em.X<<"x"<<em.Y<<"x"<<em.Z
<<" offset: ("<<of.X<<","<<of.Y<<","<<of.Z<<")"<<std::endl;
for(s32 y=m_area.MaxEdge.Y; y>=m_area.MinEdge.Y; y--)
{
if(em.X >= 3 && em.Y >= 3)
{
if (y==m_area.MinEdge.Y+2) o<<"^ ";
else if(y==m_area.MinEdge.Y+1) o<<"| ";
else if(y==m_area.MinEdge.Y+0) o<<"y x-> ";
else o<<" ";
}
for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++)
{
for(s32 x=m_area.MinEdge.X; x<=m_area.MaxEdge.X; x++)
{
u8 f = m_flags[m_area.index(x,y,z)];
char c;
if(f & VOXELFLAG_NOT_LOADED)
c = 'N';
else if(f & VOXELFLAG_INEXISTENT)
c = 'I';
else
{
c = 'X';
u8 m = m_data[m_area.index(x,y,z)].d;
u8 pr = m_data[m_area.index(x,y,z)].pressure;
if(mode == VOXELPRINT_MATERIAL)
{
if(m <= 9)
c = m + '0';
}
else if(mode == VOXELPRINT_WATERPRESSURE)
{
if(m == CONTENT_WATER)
{
c = 'w';
if(pr <= 9)
c = pr + '0';
}
else if(liquid_replaces_content(m))
{
c = ' ';
}
else
{
c = '#';
}
}
}
o<<c;
}
o<<' ';
}
o<<std::endl;
}
}
void VoxelManipulator::addArea(VoxelArea area)
{
// Cancel if requested area has zero volume
if(area.getExtent() == v3s16(0,0,0))
return;
// Cancel if m_area already contains the requested area
if(m_area.contains(area))
return;
TimeTaker timer("addArea", &addarea_time);
// Calculate new area
VoxelArea new_area;
// New area is the requested area if m_area has zero volume
if(m_area.getExtent() == v3s16(0,0,0))
{
new_area = area;
}
// Else add requested area to m_area
else
{
new_area = m_area;
new_area.addArea(area);
}
s32 new_size = new_area.getVolume();
/*dstream<<"adding area ";
area.print(dstream);
dstream<<", old area ";
m_area.print(dstream);
dstream<<", new area ";
new_area.print(dstream);
dstream<<", new_size="<<new_size;
dstream<<std::endl;*/
// Allocate and clear new data
MapNode *new_data = new MapNode[new_size];
u8 *new_flags = new u8[new_size];
for(s32 i=0; i<new_size; i++)
{
new_flags[i] = VOXELFLAG_NOT_LOADED;
}
// Copy old data
for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++)
for(s32 y=m_area.MinEdge.Y; y<=m_area.MaxEdge.Y; y++)
for(s32 x=m_area.MinEdge.X; x<=m_area.MaxEdge.X; x++)
{
// If loaded, copy data and flags
if((m_flags[m_area.index(x,y,z)] & VOXELFLAG_NOT_LOADED) == false)
{
new_data[new_area.index(x,y,z)] = m_data[m_area.index(x,y,z)];
new_flags[new_area.index(x,y,z)] = m_flags[m_area.index(x,y,z)];
}
}
// Replace area, data and flags
m_area = new_area;
MapNode *old_data = m_data;
u8 *old_flags = m_flags;
/*dstream<<"old_data="<<(int)old_data<<", new_data="<<(int)new_data
<<", old_flags="<<(int)m_flags<<", new_flags="<<(int)new_flags<<std::endl;*/
m_data = new_data;
m_flags = new_flags;
if(old_data)
delete[] old_data;
if(old_flags)
delete[] old_flags;
//dstream<<"addArea done"<<std::endl;
}
void VoxelManipulator::copyFrom(MapNode *src, VoxelArea src_area,
v3s16 from_pos, v3s16 to_pos, v3s16 size)
{
for(s16 z=0; z<size.Z; z++)
for(s16 y=0; y<size.Y; y++)
{
s32 i_src = src_area.index(from_pos.X, from_pos.Y+y, from_pos.Z+z);
s32 i_local = m_area.index(to_pos.X, to_pos.Y+y, to_pos.Z+z);
memcpy(&m_data[i_local], &src[i_src], size.X*sizeof(MapNode));
memset(&m_flags[i_local], 0, size.X);
}
}
void VoxelManipulator::interpolate(VoxelArea area)
{
VoxelArea emerge_area = area;
emerge_area.MinEdge -= v3s16(1,1,1);
emerge_area.MaxEdge += v3s16(1,1,1);
emerge(emerge_area);
SharedBuffer<u8> buf(area.getVolume());
for(s32 z=area.MinEdge.Z; z<=area.MaxEdge.Z; z++)
for(s32 y=area.MinEdge.Y; y<=area.MaxEdge.Y; y++)
for(s32 x=area.MinEdge.X; x<=area.MaxEdge.X; x++)
{
v3s16 p(x,y,z);
v3s16 dirs[] = {
v3s16(1,1,0),
v3s16(1,0,1),
v3s16(1,-1,0),
v3s16(1,0,-1),
v3s16(-1,1,0),
v3s16(-1,0,1),
v3s16(-1,-1,0),
v3s16(-1,0,-1),
};
//const v3s16 *dirs = g_26dirs;
s16 total = 0;
s16 airness = 0;
u8 m = CONTENT_IGNORE;
for(s16 i=0; i<8; i++)
//for(s16 i=0; i<26; i++)
{
v3s16 p2 = p + dirs[i];
u8 f = m_flags[m_area.index(p2)];
assert(!(f & VOXELFLAG_NOT_LOADED));
if(f & VOXELFLAG_INEXISTENT)
continue;
MapNode &n = m_data[m_area.index(p2)];
airness += (n.d == CONTENT_AIR) ? 1 : -1;
total++;
if(m == CONTENT_IGNORE && n.d != CONTENT_AIR)
m = n.d;
}
// 1 if air, 0 if not
buf[area.index(p)] = airness > -total/2 ? CONTENT_AIR : m;
//buf[area.index(p)] = airness > -total ? CONTENT_AIR : m;
//buf[area.index(p)] = airness >= -7 ? CONTENT_AIR : m;
}
for(s32 z=area.MinEdge.Z; z<=area.MaxEdge.Z; z++)
for(s32 y=area.MinEdge.Y; y<=area.MaxEdge.Y; y++)
for(s32 x=area.MinEdge.X; x<=area.MaxEdge.X; x++)
{
v3s16 p(x,y,z);
m_data[m_area.index(p)].d = buf[area.index(p)];
}
}
void VoxelManipulator::clearFlag(u8 flags)
{
// 0-1ms on moderate area
TimeTaker timer("clearFlag", &clearflag_time);
v3s16 s = m_area.getExtent();
/*dstream<<"clearFlag clearing area of size "
<<""<<s.X<<"x"<<s.Y<<"x"<<s.Z<<""
<<std::endl;*/
//s32 count = 0;
/*for(s32 z=m_area.MinEdge.Z; z<=m_area.MaxEdge.Z; z++)
for(s32 y=m_area.MinEdge.Y; y<=m_area.MaxEdge.Y; y++)
for(s32 x=m_area.MinEdge.X; x<=m_area.MaxEdge.X; x++)
{
u8 f = m_flags[m_area.index(x,y,z)];
m_flags[m_area.index(x,y,z)] &= ~flags;
if(m_flags[m_area.index(x,y,z)] != f)
count++;
}*/
s32 volume = m_area.getVolume();
for(s32 i=0; i<volume; i++)
{
m_flags[i] &= ~flags;
}
/*s32 volume = m_area.getVolume();
for(s32 i=0; i<volume; i++)
{
u8 f = m_flags[i];
m_flags[i] &= ~flags;
if(m_flags[i] != f)
count++;
}
dstream<<"clearFlag changed "<<count<<" flags out of "
<<volume<<" nodes"<<std::endl;*/
}
int VoxelManipulator::getWaterPressure(v3s16 p, s16 &highest_y, int recur_count)
{
m_flags[m_area.index(p)] |= VOXELFLAG_CHECKED2;
if(p.Y > highest_y)
highest_y = p.Y;
/*if(recur_count > 1000)
throw ProcessingLimitException
("getWaterPressure recur_count limit reached");*/
if(recur_count > 10000)
return -1;
recur_count++;
v3s16 dirs[6] = {
v3s16(0,1,0), // top
v3s16(0,0,1), // back
v3s16(0,0,-1), // front
v3s16(1,0,0), // right
v3s16(-1,0,0), // left
v3s16(0,-1,0), // bottom
};
// Load neighboring nodes
emerge(VoxelArea(p - v3s16(1,1,1), p + v3s16(1,1,1)), 1);
s32 i;
for(i=0; i<6; i++)
{
v3s16 p2 = p + dirs[i];
u8 f = m_flags[m_area.index(p2)];
// Ignore inexistent or checked nodes
if(f & (VOXELFLAG_INEXISTENT | VOXELFLAG_CHECKED2))
continue;
MapNode &n = m_data[m_area.index(p2)];
// Ignore non-liquid nodes
if(content_liquid(n.d) == false)
continue;
int pr;
// If at ocean surface
if(n.pressure == 1 && n.d == CONTENT_OCEAN)
//if(n.pressure == 1) // Causes glitches but is fast
{
pr = 1;
}
// Otherwise recurse more
else
{
pr = getWaterPressure(p2, highest_y, recur_count);
if(pr == -1)
continue;
}
// If block is at top, pressure here is one higher
if(i == 0)
{
if(pr < 255)
pr++;
}
// If block is at bottom, pressure here is one lower
else if(i == 5)
{
if(pr > 1)
pr--;
}
// Node is on the pressure route
m_flags[m_area.index(p)] |= VOXELFLAG_CHECKED4;
// Got pressure
return pr;
}
// Nothing useful found
return -1;
}
void VoxelManipulator::spreadWaterPressure(v3s16 p, int pr,
VoxelArea request_area,
core::map<v3s16, u8> &active_nodes,
int recur_count)
{
//if(recur_count > 10000)
/*throw ProcessingLimitException
("spreadWaterPressure recur_count limit reached");*/
if(recur_count > 10)
return;
recur_count++;
/*dstream<<"spreadWaterPressure: p=("
<<p.X<<","<<p.Y<<","<<p.Z<<")"
<<", oldpr="<<(int)m_data[m_area.index(p)].pressure
<<", pr="<<pr
<<", recur_count="<<recur_count
<<", request_area=";
request_area.print(dstream);
dstream<<std::endl;*/
m_flags[m_area.index(p)] |= VOXELFLAG_CHECKED3;
m_data[m_area.index(p)].pressure = pr;
v3s16 dirs[6] = {
v3s16(0,1,0), // top
v3s16(-1,0,0), // left
v3s16(1,0,0), // right
v3s16(0,0,-1), // front
v3s16(0,0,1), // back
v3s16(0,-1,0), // bottom
};
// Load neighboring nodes
emerge(VoxelArea(p - v3s16(1,1,1), p + v3s16(1,1,1)), 2);
s32 i;
for(i=0; i<6; i++)
{
v3s16 p2 = p + dirs[i];
u8 f = m_flags[m_area.index(p2)];
// Ignore inexistent and checked nodes
if(f & (VOXELFLAG_INEXISTENT | VOXELFLAG_CHECKED3))
continue;
MapNode &n = m_data[m_area.index(p2)];
/*
If material is air:
add to active_nodes if there is flow-causing pressure.
NOTE: Do not remove anything from there. We cannot know
here if some other neighbor of it causes flow.
*/
if(liquid_replaces_content(n.d))
{
bool pressure_causes_flow = false;
// If empty block is at top
if(i == 0)
{
if(m_disable_water_climb)
continue;
//if(pr >= PRESERVE_WATER_VOLUME ? 3 : 2)
if(pr >= 3)
pressure_causes_flow = true;
}
// If block is at bottom
else if(i == 5)
{
pressure_causes_flow = true;
}
// If block is at side
else
{
//if(pr >= PRESERVE_WATER_VOLUME ? 2 : 1)
if(pr >= 2)
pressure_causes_flow = true;
}
if(pressure_causes_flow)
{
active_nodes[p2] = 1;
}
continue;
}
// Ignore non-liquid nodes
if(content_liquid(n.d) == false)
continue;
int pr2 = pr;
// If block is at top, pressure there is lower
if(i == 0)
{
if(pr2 > 0)
pr2--;
}
// If block is at bottom, pressure there is higher
else if(i == 5)
{
if(pr2 < 255)
pr2++;
}
/*if(m_disable_water_climb)
{
if(pr2 > 3)
pr2 = 3;
}*/
// Ignore if correct pressure is already set and is not on
// request_area.
// Thus, request_area can be used for updating as much
// pressure info in some area as possible to possibly
// make some calls to getWaterPressure unnecessary.
if(n.pressure == pr2 && request_area.contains(p2) == false)
continue;
spreadWaterPressure(p2, pr2, request_area, active_nodes, recur_count);
}
}
void VoxelManipulator::updateAreaWaterPressure(VoxelArea a,
core::map<v3s16, u8> &active_nodes,
bool checked3_is_clear)
{
TimeTaker timer("updateAreaWaterPressure", &updateareawaterpressure_time);
emerge(a, 3);
bool checked2_clear = false;
if(checked3_is_clear == false)
{
//clearFlag(VOXELFLAG_CHECKED3);
clearFlag(VOXELFLAG_CHECKED3 | VOXELFLAG_CHECKED2);
checked2_clear = true;
}
for(s32 z=a.MinEdge.Z; z<=a.MaxEdge.Z; z++)
for(s32 y=a.MinEdge.Y; y<=a.MaxEdge.Y; y++)
for(s32 x=a.MinEdge.X; x<=a.MaxEdge.X; x++)
{
v3s16 p(x,y,z);
u8 f = m_flags[m_area.index(p)];
// Ignore inexistent or checked nodes
if(f & (VOXELFLAG_INEXISTENT | VOXELFLAG_CHECKED3))
continue;
MapNode &n = m_data[m_area.index(p)];
// Ignore non-liquid nodes
if(content_liquid(n.d) == false)
continue;
if(checked2_clear == false)
{
clearFlag(VOXELFLAG_CHECKED2);
checked2_clear = true;
}
checked2_clear = false;
s16 highest_y = -32768;
int recur_count = 0;
int pr = -1;
try
{
// 0-1ms @ recur_count <= 100
//TimeTaker timer("getWaterPressure", g_irrlicht);
pr = getWaterPressure(p, highest_y, recur_count);
}
catch(ProcessingLimitException &e)
{
//dstream<<"getWaterPressure ProcessingLimitException"<<std::endl;
}
if(pr == -1)
{
assert(highest_y != -32768);
pr = highest_y - p.Y + 1;
if(pr > 255)
pr = 255;
/*dstream<<"WARNING: Pressure at ("
<<p.X<<","<<p.Y<<","<<p.Z<<")"
<<" = "<<pr
//<<" and highest_y == -32768"
<<std::endl;
assert(highest_y != -32768);
continue;*/
}
try
{
// 0ms
//TimeTaker timer("spreadWaterPressure", g_irrlicht);
spreadWaterPressure(p, pr, a, active_nodes, 0);
}
catch(ProcessingLimitException &e)
{
//dstream<<"getWaterPressure ProcessingLimitException"<<std::endl;
}
}
}
bool VoxelManipulator::flowWater(v3s16 removed_pos,
core::map<v3s16, u8> &active_nodes,
int recursion_depth, bool debugprint,
u32 stoptime)
{
v3s16 dirs[6] = {
v3s16(0,1,0), // top
v3s16(0,0,-1), // front
v3s16(0,0,1), // back
v3s16(-1,0,0), // left
v3s16(1,0,0), // right
v3s16(0,-1,0), // bottom
};
recursion_depth++;
v3s16 p;
bool from_ocean = false;
// Randomize horizontal order
static s32 cs = 0;
if(cs < 3)
cs++;
else
cs = 0;
s16 s1 = (cs & 1) ? 1 : -1;
s16 s2 = (cs & 2) ? 1 : -1;
//dstream<<"s1="<<s1<<", s2="<<s2<<std::endl;
{
TimeTaker timer1("flowWater pre", &flowwater_pre_time);
// Load neighboring nodes
emerge(VoxelArea(removed_pos - v3s16(1,1,1), removed_pos + v3s16(1,1,1)), 4);
// Ignore incorrect removed_pos
{
u8 f = m_flags[m_area.index(removed_pos)];
// Ignore inexistent or checked node
if(f & (VOXELFLAG_INEXISTENT | VOXELFLAG_CHECKED))
return false;
MapNode &n = m_data[m_area.index(removed_pos)];
// Ignore nodes to which the water can't go
if(liquid_replaces_content(n.d) == false)
return false;
}
s32 i;
for(i=0; i<6; i++)
{
// Don't raise water from bottom
if(m_disable_water_climb && i == 5)
continue;
p = removed_pos + v3s16(s1*dirs[i].X, dirs[i].Y, s2*dirs[i].Z);
u8 f = m_flags[m_area.index(p)];
// Inexistent or checked nodes can't move
if(f & (VOXELFLAG_INEXISTENT | VOXELFLAG_CHECKED))
continue;
MapNode &n = m_data[m_area.index(p)];
// Only liquid nodes can move
if(content_liquid(n.d) == false)
continue;
// If block is at top, select it always
if(i == 0)
{
break;
}
// If block is at bottom, select it if it has enough pressure
if(i == 5)
{
//if(n.pressure >= PRESERVE_WATER_VOLUME ? 3 : 2)
if(n.pressure >= 3)
break;
continue;
}
// Else block is at some side. Select it if it has enough pressure
//if(n.pressure >= PRESERVE_WATER_VOLUME ? 2 : 1)
if(n.pressure >= 2)
{
break;
}
}
// If there is nothing to move, return
if(i==6)
return false;
/*
Move water and bubble
*/
u8 m = m_data[m_area.index(p)].d;
u8 f = m_flags[m_area.index(p)];
if(m == CONTENT_OCEAN)
from_ocean = true;
// Move air bubble if not taking water from ocean
if(from_ocean == false)
{
m_data[m_area.index(p)].d = m_data[m_area.index(removed_pos)].d;
m_flags[m_area.index(p)] = m_flags[m_area.index(removed_pos)];
}
/*
This has to be done to copy the brightness of a light source
correctly. Otherwise unspreadLight will fuck up when water
has replaced a light source.
*/
u8 light = m_data[m_area.index(removed_pos)].getLightBanksWithSource();
m_data[m_area.index(removed_pos)].d = m;
m_flags[m_area.index(removed_pos)] = f;
m_data[m_area.index(removed_pos)].setLightBanks(light);
// Mark removed_pos checked
m_flags[m_area.index(removed_pos)] |= VOXELFLAG_CHECKED;
// If block was dropped from surface, increase pressure
if(i == 0 && m_data[m_area.index(removed_pos)].pressure == 1)
{
m_data[m_area.index(removed_pos)].pressure = 2;
}
/*
NOTE: This does not work as-is
if(m == CONTENT_OCEAN)
{
// If block was raised to surface, increase pressure of
// source node
if(i == 5 && m_data[m_area.index(p)].pressure == 1)
{
m_data[m_area.index(p)].pressure = 2;
}
}*/
/*if(debugprint)
{
dstream<<"VoxelManipulator::flowWater(): Moved bubble:"<<std::endl;
print(dstream, VOXELPRINT_WATERPRESSURE);
}*/
// Update pressure
VoxelArea a;
a.addPoint(p - v3s16(1,1,1));
a.addPoint(p + v3s16(1,1,1));
a.addPoint(removed_pos - v3s16(1,1,1));
a.addPoint(removed_pos + v3s16(1,1,1));
updateAreaWaterPressure(a, active_nodes);
/*if(debugprint)
{
dstream<<"VoxelManipulator::flowWater(): Pressure updated:"<<std::endl;
print(dstream, VOXELPRINT_WATERPRESSURE);
//std::cin.get();
}*/
if(debugprint)
{
dstream<<"VoxelManipulator::flowWater(): step done:"<<std::endl;
print(dstream, VOXELPRINT_WATERPRESSURE);
//std::cin.get();
}
}//timer1
//if(PRESERVE_WATER_VOLUME)
if(from_ocean == false)
{
// Flow water to the newly created empty position
/*flowWater(p, active_nodes, recursion_depth,
debugprint, counter, counterlimit);*/
flowWater(p, active_nodes, recursion_depth,
debugprint, stoptime);
}
if(stoptime != 0)
{
u32 timenow = getTimeMs();
if(timenow >= stoptime ||
(stoptime < 0x80000000 && timenow > 0x80000000))
{
dstream<<"flowWater: stoptime reached"<<std::endl;
throw ProcessingLimitException("flowWater stoptime reached");
}
}
find_again:
// Try flowing water to empty positions around removed_pos.
// They are checked in reverse order compared to the previous loop.
for(s32 i=5; i>=0; i--)
{
// Don't try to flow to top
if(m_disable_water_climb && i == 0)
continue;
//v3s16 p = removed_pos + dirs[i];
p = removed_pos + v3s16(s1*dirs[i].X, dirs[i].Y, s2*dirs[i].Z);
u8 f = m_flags[m_area.index(p)];
// Water can't move to inexistent nodes
if(f & VOXELFLAG_INEXISTENT)
continue;
MapNode &n = m_data[m_area.index(p)];
// Water can only move to air
if(liquid_replaces_content(n.d) == false)
continue;
// Flow water to node
bool moved =
flowWater(p, active_nodes, recursion_depth,
debugprint, stoptime);
/*flowWater(p, active_nodes, recursion_depth,
debugprint, counter, counterlimit);*/
if(moved)
{
// Search again from all neighbors
goto find_again;
}
}
return true;
}
void VoxelManipulator::flowWater(
core::map<v3s16, u8> &active_nodes,
int recursion_depth, bool debugprint,
u32 timelimit)
{
addarea_time = 0;
emerge_time = 0;
emerge_load_time = 0;
clearflag_time = 0;
updateareawaterpressure_time = 0;
flowwater_pre_time = 0;
if(active_nodes.size() == 0)
{
dstream<<"flowWater: no active nodes"<<std::endl;
return;
}
//TimeTaker timer1("flowWater (active_nodes)", g_irrlicht);
//dstream<<"active_nodes.size() = "<<active_nodes.size()<<std::endl;
u32 stoptime = 0;
stoptime = getTimeMs() + timelimit;
// Count of handled active nodes
u32 handled_count = 0;
try
{
/*
Take random one at first
This is randomized only at the first time so that all
subsequent nodes will be taken at roughly the same position
*/
s32 k = 0;
if(active_nodes.size() != 0)
k = (s32)rand() % (s32)active_nodes.size();
// Flow water to active nodes
for(;;)
//for(s32 h=0; h<1; h++)
{
if(active_nodes.size() == 0)
break;
handled_count++;
// Clear check flags
clearFlag(VOXELFLAG_CHECKED);
//dstream<<"Selecting a new active_node"<<std::endl;
#if 0
// Take first one
core::map<v3s16, u8>::Node
*n = active_nodes.getIterator().getNode();
#endif
#if 1
core::map<v3s16, u8>::Iterator
i = active_nodes.getIterator().getNode();
for(s32 j=0; j<k; j++)
{
i++;
}
core::map<v3s16, u8>::Node *n = i.getNode();
// Decrement index if less than 0.
// This keeps us in existing indices always.
if(k > 0)
k--;
#endif
v3s16 p = n->getKey();
active_nodes.remove(p);
flowWater(p, active_nodes, recursion_depth,
debugprint, stoptime);
}
}
catch(ProcessingLimitException &e)
{
//dstream<<"getWaterPressure ProcessingLimitException"<<std::endl;
}
/*v3s16 e = m_area.getExtent();
s32 v = m_area.getVolume();
dstream<<"flowWater (active): "
<<"area ended up as "
<<e.X<<"x"<<e.Y<<"x"<<e.Z<<" = "<<v
<<", handled a_node count: "<<handled_count
<<", active_nodes.size() = "<<active_nodes.size()
<<std::endl;
dstream<<"addarea_time: "<<addarea_time
<<", emerge_time: "<<emerge_time
<<", emerge_load_time: "<<emerge_load_time
<<", clearflag_time: "<<clearflag_time
<<", flowwater_pre_time: "<<flowwater_pre_time
<<", updateareawaterpressure_time: "<<updateareawaterpressure_time
<<std::endl;*/
}
//END